Yongcun Li, Yuwei Wang, Fang Dong, Shoujun Yuan, Zhenhu Hu, Wei Wang
Bioresource technology 2024 FebHydrogenotrophic denitrification, an environment-friendly process for organic-free influents, is limited due to poor hydrogen mass transfer efficiency and significant pH fluctuations. In this study, we manipulated the carbon dioxide-to-hydrogen ratio to improve hydrogenotrophic denitrification. When carbon dioxide-to-hydrogen ratio was 1:1 (carbon dioxide, 200 ml: hydrogen, 200 ml), the hydrogen utilization and denitrification rates were 2.4 times and 3.0 times that when carbon dioxide-to-hydrogen ratio was 0:1 (carbon dioxide, 0 ml: hydrogen, 200 ml), respectively. The pH fluctuation decreased from 3.1±0.3 to 0.2±0.1. Furthermore, the hydrogenotrophic denitrification, acetoclastic denitrification, homoacetogenic, and electron transfer activities of the sludge were improved. A high carbon dioxide-to-hydrogen ratio augmented the acid-producing and heterotrophic denitrifying microorganism populations. By maintaining a high carbon dioxide-to-hydrogen ratio, the dominant hydrogenotrophic autotrophic denitrification pathway was transformed into a homoacetogenesis-heterotrophic denitrification pathway, thereby achieving higher hydrogen utilization and denitrification rates. Copyright © 2023 Elsevier Ltd. All rights reserved.
Yongcun Li, Yuwei Wang, Fang Dong, Shoujun Yuan, Zhenhu Hu, Wei Wang. Controlling carbon dioxide-to-hydrogen ratio to improve hydrogen utilization and denitrification rates of hydrogenotrophic autotrophic denitrification through homoacetogenesis-heterotrophic denitrification pathway. Bioresource technology. 2024 Feb;393:130116
Mesh Tags
Substances
PMID: 38016583
View Full Text