Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Response to digital healthcare lifestyle modifications is highly divergent. This study aimed to examine the association between single nucleotide polymorphism (SNP) genotypes and clinical efficacy of a digital healthcare lifestyle modification. We genotyped 97 obesity-related SNPs from 45 participants aged 18-39 years, who underwent lifestyle modification via digital cognitive behavioral therapy for obesity for 8 weeks. Anthropometric, eating behavior phenotypes, and psychological measures were analyzed before and after the intervention to identify their clinical efficacy. CETP (rs9939224) SNP significantly predict "super-responders" with greater body mass index (BMI) reduction (p = 0.028; GG - 2.91%, GT - 9.94%), while APOA2 (rs5082) appeared to have some potential for predicting "poor-responders" with lower BMI reduction (p = 0.005; AA - 6.17%, AG + 2.05%, and GG + 5.11%). These SNPs was also associated with significant differences in eating behavior changes, healthy diet proportions, health diet diversity, emotional and restrained eating behavior changes. Furthermore, classification using gene-gene interactions between rs9939224 and rs5082 significantly predicted the best response, with a greater decrease in BMI (p = 0.038; - 11.45% for the best response group (CEPT GT/TT × APOA2 AA) vs. + 2.62% for the worst response group (CEPT GG × APOA2 AG/GG)). CETP and APOA2 SNPs can be used as candidate markers to predict the efficacy of digital healthcare lifestyle modifications based on genotype-based precision medicine.Trial registration: NCT03465306, ClinicalTrials.gov. Registered March, 2018. © 2023. The Author(s).

Citation

Meelim Kim, Seolha Lee, Eun Cho, Kyung-Won Hong, So-Jin You, Hyung Jin Choi. CETP and APOA2 polymorphisms are associated with weight loss and healthy eating behavior changes in response to digital lifestyle modifications. Scientific reports. 2023 Dec 07;13(1):21615

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38062157

View Full Text