Correlation Engine 2.0
Clear Search sequence regions


  • barium (4)
  • behavior (1)
  • electron (1)
  • gold (4)
  • help (1)
  • research (1)
  • Sizes of these terms reflect their relevance to your search.

    Fluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface.

    Citation

    Ankur Sood, Ritu Singhmar, Sumanta Sahoo, Dahae Lee, Chul Min Kim, Anuj Kumar, Sung Soo Han. Physicochemical, electrochemical, and biological characterization of field assisted gold nanocluster-coated barium titanate nanoparticles for biomedical applications. Journal of materials chemistry. B. 2024 Jan 03;12(2):525-539

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 38113029

    View Full Text