Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-β (TGF-β) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.

Citation

Pankaj Sharma, Xiaolong Zhang, Kevin Ly, Ji Hyung Kim, Qi Wan, Jessica Kim, Mumeng Lou, Lisa Kain, Luc Teyton, Florian Winau. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape. Science (New York, N.Y.). 2024 Jan 12;383(6679):190-200

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38207022

View Full Text