Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Duodenum-preserving pancreatic head resection (DPPHR) serves as a surgical intervention for managing benign and low-grade malignant neoplasms located in the head of the pancreas. This surgical approach enables the thorough excision of pancreatic head lesions, reducing the necessity for digestive tract reconstruction and enhancing the patient's quality of life.1 Performing a minimally invasive DPPHR is a complex surgical procedure, particularly when safeguarding the bile duct and the pancreaticoduodenal arterial arch. Robotic surgery is among the latest innovations in minimally invasive surgery and is widely used in many surgical specialties. It offers advantages such as rotatable surgical instruments, muscle tremor filters and up to 10-15 times three dimensional (3D) visual field,2 and achieves high flexibility and accuracy in surgical operations. Indocyanine green (ICG) fluorescence imaging technology is also applied to provide real-time intraoperative assessment of the biliary system and blood supply, which helps maintain the biliary system's integrity.3,4 We first report the complete procedure of ICG applied to the da Vinci robotic Xi system for preserving the DPPHR. A 48-year-old female patient was diagnosed with pancreatic duct stones, chronic pancreatitis, and pancreatogenic diabetes. Enhanced computed tomography (CT) scans revealed pancreatic head stones, pancreatic atrophy, scattered calcifications, and a dilated pancreatic duct. An attempt at endoscopic retrograde cholangiopancreatography (ERCP) treatment was abandoned during hospitalization due to unsuccessful catheterization. Following informed consent from the patient and her family, a robotic DPPHR was conducted utilizing ICG fluorescence imaging technology. Approximately 60 min before the surgery, 2 mg of ICG was injected via the peripheral vein. The individual was positioned in a reclined posture with the upper part of the bed raised to an angle of 30° and a leftward tilt of 15°. Upon entering the abdominal cavity, existing adhesions were meticulously separated and the gastrocolic ligament was opened to expose the pancreas. The lower part of the pancreas was separated and the superior mesenteric vein (SMV) was identified at the inferior boundary of the pancreatic neck. The pancreas was cut upward and the pancreatic duct was severed using scissors. Dissection of the lateral wall of the portal vein-SMV in the pancreatic head segment was performed. Meticulous dissection was carried out along the pancreatic tissue, retracting the uncinate process of the pancreas in an upward and rightward direction. During the dissection, caution was exercised to protect the anterior and posterior pancreaticoduodenal arterial arch. By using ICG fluorescence imaging, the path of the common bile duct was identified and verified. Caution was exercised to avoid injuring the bile duct. After isolating the CBD, the head and uncinate process of the pancreas was entirely excised. Under the fluorescence imaging mode, the wholeness of the CBD was scrutinized for any potential seepage of the contrast agent. Ultimately, a Roux-en-Y end-to-side pancreaticojejunostomy (duct to mucosa) was executed. The surgery took 265 min and the estimated blood loss was about 150 mL. Without any postoperative complications, the patient was released from the hospital 13 days following the surgery. Postoperative pathology confirmed pancreatic duct stones and chronic pancreatitis. We have successfully performed four cases of robotic DPPHR using this technique, with only one patient experiencing a postoperative complication of pulmonary embolism. All patients were discharged successfully without any further complications. Employing ICG fluorescence imaging in a robotic DPPHR has been demonstrated to be both secure and achievable. This technique potentially provides novel therapeutic perspectives, particularly for patients with ambiguous delineation between pancreatic and biliary ductal structures. © 2024. Society of Surgical Oncology.

Citation

Yan Li, Kezhen Zong, Ming Li, Yanyao Liu, Zhongjun Wu, Baoyong Zhou. Video-Based Indocyanine Green Fluorescence Applied to Robotic Duodenum-Preserving Pancreatic Head Resection. Annals of surgical oncology. 2024 Apr;31(4):2654-2655

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38273175

View Full Text