Correlation Engine 2.0
Clear Search sequence regions


filter terms:
  • cerium (7)
  • hydrogels (8)
  • metal (5)
  • polyvinyl alcohol (1)
  • rapid (2)
  • sodium (1)
  • Sizes of these terms reflect their relevance to your search.

    Skin interstitial fluid (ISF) has been an alternative source in the field of biomarkers analysis. This work developed swellable hydrogel microneedles (MNs) composed of polyvinyl alcohol and sodium alginate by chemical crosslinking (PVA/SA). Here, PVA/SA was firstly used to fabricate hydrogel MNs, achieving a swellable ratio of 150 % and a rapid extraction of 6.4 mg ISF in 15 min. To replace expensive and non-reusable test kits, hydrogel MNs based on composite nanozyme with high oxidase-like activity were successfully developed to recover and detect biomarkers. The nanozyme was composed of MnO2-modified mixed valence cerium-metal organic frame (MCM). MCM was characterized by multiple techniques to further confirm its composition and structure. MCM combined with the reduction reaction of glutathione (GSH) with oxidized substrate to achieve a colorimetric GSH detection, which had a detection limit (LOD, 0.36 μM) of GSH. The hydrogel MNs based on MCM (MCM-MNs) were firstly applied to the rapid detection of GSH in ISF. All in all, this method combines the advantages of nanozyme and hydrogel MNs to achieve a timely and minimally invasive analysis, which provides a new dimension for the in vivo detection of GSH by skin ISF and holds great implications in biomedical and bioanalysis fields. Copyright © 2023. Published by Elsevier B.V.

    Citation

    Jiuhong Zhao, Jiatong Lv, Guixia Ling, Peng Zhang. A swellable hydrogel microneedle based on cerium-metal organic frame composite nanozyme for detection of biomarkers. International journal of biological macromolecules. 2024 Jan;254(Pt 1):127745

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 38287590

    View Full Text