Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The growth of multicellular organisms is a process akin to additive manufacturing where cellular proliferation and mechanical boundary conditions, among other factors, drive morphogenesis. Engineers have limited ability to engineer morphogenesis to manufacture goods or to reconfigure materials comprised of biomass. Herein, a method that uses biological processes to grow and regrow magnetic engineered living materials (mELMs) into desired geometries is reported. These composites contain Saccharomyces cerevisiae and magnetic particles within a hydrogel matrix. The reconfigurable manufacturing process relies on the growth of living cells, magnetic forces, and elastic recovery of the hydrogel. The mELM then adopts a form in an external magnetic field. Yeast within the material proliferates, resulting in 259 ± 14% volume expansion. Yeast proliferation fixes the magnetic deformation, even when the magnetic field is removed. The shape fixity can be up to 99.3 ± 0.3%. The grown mELM can recover up to 73.9 ± 1.9% of the original form by removing yeast cell walls. The directed growth and recovery process can be repeated at least five times. This work enables ELMs to be processed and reprocessed into user-defined geometries without external material deposition. © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH.


Suitu Wang, Sangmin Lim, Seelay Tasmim, Manivannan Sivaperuman Kalairaj, Laura K Rivera-Tarazona, Mustafa K Abdelrahman, Mahjabeen Javed, Sasha M George, Yoo Jin Lee, M Khalid Jawed, Taylor H Ware. Reconfigurable Growth of Engineered Living Materials. Advanced materials (Deerfield Beach, Fla.). 2024 Jan 30:e2309818

PMID: 38288578

View Full Text