Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots1,2. Here we show that levels of SHR and SCR early in the cell cycle determine the orientation of the division plane, resulting in either formative or proliferative cell division. We used 4D quantitative, long-term and frequent (every 15 min for up to 48 h) light sheet and confocal microscopy to probe the dynamics of SHR and SCR in tandem within single cells of living roots. Directly controlling their dynamics with an SHR induction system enabled us to challenge an existing bistable model3 of the SHR-SCR gene-regulatory network and to identify key features that are essential for rescue of formative divisions in shr mutants. SHR and SCR kinetics do not align with the expected behaviour of a bistable system, and only low transient levels, present early in the cell cycle, are required for formative divisions. These results reveal an uncharacterized mechanism by which developmental regulators directly coordinate patterning and growth. © 2024. The Author(s).

Citation

Cara M Winter, Pablo Szekely, Vladimir Popov, Heather Belcher, Raina Carter, Matthew Jones, Scott E Fraser, Thai V Truong, Philip N Benfey. SHR and SCR coordinate root patterning and growth early in the cell cycle. Nature. 2024 Feb;626(7999):611-616

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38297119

View Full Text