Geng Lu, Chuangzan Yang, Kedi Chu, Yi Zhu, Sa Huang, Juying Zheng, Huanhuan Jia, Xiaofang Li, Junfeng Ban
Nanomedicine (London, England) 2024 AprBackground: Osteoarthritis causes tremendous damage to the joints, reducing the quality of life and imposing significant financial burden. An implantable drug-delivery system can improve the symptomatic manifestations with low doses and frequencies. However, the free drug has short retention in the joint cavity. Materials & methods: This study used electrostatic spinning technology to create an implantable drug-delivery system loaded with celecoxib (celecoxib nanofibers [Cel-NFs]) to improve retention and bioavailability. Results: Cel-NFs exhibited good formability, hydrophilicity and tensile properties. Cel-NFs were able to continuously release drugs for 2 weeks and increase the uptake capacity of Raw 264.7 cells, ultimately ameliorating symptoms in osteoarthritis rats. Conclusion: These results suggest that Cel-NFs can effectively ameliorate cartilage damage, reduce joint pain and alleviate osteoarthritis progression.
Geng Lu, Chuangzan Yang, Kedi Chu, Yi Zhu, Sa Huang, Juying Zheng, Huanhuan Jia, Xiaofang Li, Junfeng Ban. Implantable celecoxib nanofibers made by electrospinning: fabrication and characterization. Nanomedicine (London, England). 2024 Apr;19(8):657-669
PMID: 38305028
View Full Text