Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

RNA polymerase II (RNA Pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome-wide distribution of more persistent backtracking are unknown. Consequently, we developed a method to directly sequence the extruded, "backtracked" 3' RNA. Our data show that RNA Pol II slides backward more than 20 nt in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where RNA Pol II pauses near promoters and intron-exon junctions and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking can potentially affect diverse gene expression programs. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Kevin B Yang, Aviram Rasouly, Vitaly Epshtein, Criseyda Martinez, Thao Nguyen, Ilya Shamovsky, Evgeny Nudler. Persistence of backtracking by human RNA polymerase II. Molecular cell. 2024 Mar 07;84(5):897-909.e4

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38340716

View Full Text