Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants. Copyright © 2024. Published by Elsevier B.V.

Citation

Xinke Zhang, Guoshuai Zhang, Qi Yan, Bashir Ahmad, Jin Pei, Linfang Huang. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome. The Science of the total environment. 2024 Apr 01;919:170801

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38340858

View Full Text