Correlation Engine 2.0
Clear Search sequence regions


  • dead (4)
  • kinds (1)
  • step length (5)
  • Sizes of these terms reflect their relevance to your search.

    Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage-Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR. Copyright © 2024 Chinyang Henry Tseng and Jiunn-Yih Wu.

    Citation

    Chinyang Henry Tseng, Jiunn-Yih Wu. SHAKF-PU: Sage-Husa Adaptive Kalman Filtering-Based Pedestrian Characteristic Parameter Update Mechanism for Enhancing Step Length Estimation in Pedestrian Dead Reckoning. Applied bionics and biomechanics. 2024;2024:1150076


    PMID: 38361980

    View Full Text