Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria. © The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.

Citation

Mark Lyng, Johan P B Jørgensen, Morten D Schostag, Scott A Jarmusch, Diana K C Aguilar, Carlos N Lozano-Andrade, Ákos T Kovács. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. The ISME journal. 2024 Jan 08;18(1)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38365234

View Full Text