Xiangfei He, Hehua Zhang, Jing Huang, Dechun Zhao, Yang Li, Rui Nie, Xianghua Liu
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 2024 Feb 25The conventional fault diagnosis of patient monitors heavily relies on manual experience, resulting in low diagnostic efficiency and ineffective utilization of fault maintenance text data. To address these issues, this paper proposes an intelligent fault diagnosis method for patient monitors based on multi-feature text representation, improved bidirectional gate recurrent unit (BiGRU) and attention mechanism. Firstly, the fault text data was preprocessed, and the word vectors containing multiple linguistic features was generated by linguistically-motivated bidirectional encoder representation from Transformer. Then, the bidirectional fault features were extracted and weighted by the improved BiGRU and attention mechanism respectively. Finally, the weighted loss function is used to reduce the impact of class imbalance on the model. To validate the effectiveness of the proposed method, this paper uses the patient monitor fault dataset for verification, and the macro F1 value has achieved 91.11%. The results show that the model built in this study can realize the automatic classification of fault text, and may provide assistant decision support for the intelligent fault diagnosis of the patient monitor in the future.
Xiangfei He, Hehua Zhang, Jing Huang, Dechun Zhao, Yang Li, Rui Nie, Xianghua Liu. Research on fault diagnosis of patient monitor based on text mining]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi. 2024 Feb 25;41(1):168-176
PMID: 38403618
View Full Text