Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Based on the versatile properties of bio-derived materials, non-enzymatic assays in combination with electronic devices have attracted increasing interest. Here, we report a novel enzyme-free visualization approach for the detection of erythritol, which is a zero-calorie natural sweetener and serves as an ideal sucrose substitute for diabetics or overweight people who need sugar control. The recognition element of the electrochemical biosensor was constructed by catechol modification on a chitosan-based hydrogel film. The signal transduction was achieved by the competitive binding assay of sweeteners. The results show that 2-fluorophenylboronic acid (FPBA) can form a cyclic boronate ester with the ortho-hydroxyls of both reduced catechol and oxidized quinone, impeding the electron transfer and leading to redox signal attenuation. The addition of sweeteners caused a competitive reaction resulting in bonding between the 1,2-diols and FPBA moieties, and in the recovery of the redox signals. Importantly, the pattern of redox signal changes of catechol can be detected optically, as the oxidized quinone state is darker in color than the reduced catechol state. Using a simple cell phone imaging application, we demonstrate that erythritol can be distinguished from other sweeteners in real samples using the oxidized catechol-Chit0/agarose hydrogel film. Thus, we envision that this method could allow diabetics and people who need to control their sugar intake to detect whether the product contains only erythritol in the field or at home. In addition, this work further illustrates the potential of bio-derived materials for performing redox-based functions and enzyme-free visualization assays.

Citation

Xinyue Zhang, Si Wu, Tao Feng, Yuanhao Yan, Shijing Wu, Yinyu Chen, Yu Wang, Qingmiao Wang, Ning Hu, Li Wang. Visualized sensing of erythritol using a simple enzyme-free catechol-based hydrogel film. Analytical methods : advancing methods and applications. 2024 Mar 14;16(11):1686-1696

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38421030

View Full Text