Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory. Copyright © 2024. Published by Elsevier Inc.

Citation

Abhishek Ramachandra Panigrahi, Abhinandana Sahu, Pooja Yadav, Samir Kumar Beura, Jyoti Singh, Krishnakanta Mondal, Sunil Kumar Singh. Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications. Advances in protein chemistry and structural biology. 2024;139:263-288

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38448137

View Full Text