Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Quantum dots (QDs) hold immense promise for bioimaging, yet technical challenges in surface engineering limit their wider scientific use. We introduce poly(pentafluorophenyl acrylate) (PPFPA) as a user-friendly prepolymer platform for creating precisely controlled multidentate polymeric ligands for QD surface engineering, accessible to researchers without extensive synthetic expertise. PPFPA combines the benefits of both bottom-up and prepolymer approaches, offering minimal susceptibility to hydrolysis and side reactions for controlled chemical composition, along with simple synthetic procedures using commercially available reagents. Live cell imaging experiments highlighted a significant reduction in nonspecific binding when employing PPFPA, owing to its minimal hydrolysis, in contrast to ligands synthesized by using a conventional prepolymer prone to uncontrolled hydrolysis. This observation underscores the distinct advantage of our prepolymer system. Leveraging PPFPA, we synthesized biomolecule-conjugated QDs and performed QD-based immunofluorescence to detect a cytosolic protein. To effectively label cytosolic targets in such a dense and complex environment, probes must exhibit minimal nonspecific binding and be compact. As a result, QD-immunofluorescence has focused primarily on cell surface targets. By creating compact QD-F(ab')2, we sensitively detected alpha-tubulin with a ∼50-fold higher signal-to-noise ratio compared to organic dye-based labeling. PPFPA represents a versatile and accessible platform for tailoring QD surfaces, offering a pathway to realize the full potential of colloidal QDs in various scientific applications.

Citation

JuYeon Lee, Giselle Soares, Calvin Doty, Joonhyuck Park, Jack Hovey, Alex Schrader, Hee-Sun Han. Versatile Prepolymer Platform for Controlled Tailoring of Quantum Dot Surface Properties. ACS applied materials & interfaces. 2024 Mar 27;16(12):15202-15214

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38470982

View Full Text