Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-β signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-β signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis. © 2024. The Author(s).

Citation

Zhen Lai, Mingming Li, Xiaodong Yang, Zhenjie Xian. Knockdown of the UL-16 binding protein 1 promotes osteoblast differentiation of human mesenchymal stem cells by activating the SMAD2/3 pathway. BMC musculoskeletal disorders. 2024 Mar 13;25(1):213

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38481217

View Full Text