Clear Search sequence regions


  • melanogenesis (14)
  • micrornas (10)
  • TRP1 (1)
  • TRP2 (1)
  • ultraviolet rays (1)
  • Sizes of these terms reflect their relevance to your search.

    The exosomes derived from keratinocytes can have a substantial impact on melanogenesis by influencing melanocytes. MicroRNAs (miRNAs) encapsulated within exosomes are implicated in the control of melanogenesis, particularly when under the influence of UVB irradiation. This investigation explores UVB-induced exosomal miRNAs from keratinocytes as potential regulators of melanogenesis. UVB-irradiated, keratinocyte-derived exosomes were observed to augment melanogenesis in melanocytes, resulting in an upregulation of MITF, TRP1, TRP2, and TYR expression compared to non-UVB-irradiated exosomes. Additionally, a subset of exosomal miRNAs was differentially selected and confirmed to exert both enhancing and inhibitory effects on melanogenesis through functional assays. Notably, hsa-miR-644a, hsa-miR-365b-5p, and hsa-miR-29c-3p were found to upregulate melanogenesis, while hsa-miR-18a-5p, hsa-miR-197-5p, and hsa-miR-4281 downregulated melanogenesis. These findings suggest the involvement of keratinocyte-derived exosomal miRNAs in melanogenesis regulation within melanocytes. The expression levels of exosomal miRNAs from keratinocytes exhibited a UVB-dependent increase, indicating a potential role for these miRNAs as regulators of melanogenesis in response to UVB irradiation. Furthermore, melanogenesis was found to be dependent on exosomes derived from keratinocytes. This underscores the potential of UVB-induced exosomal miRNAs derived from keratinocytes as regulators of melanogenesis. Moreover, this study unveils a significant role for exosomes in melanocyte pigmentation, presenting a novel pathway in the intricate process of melanogenesis.

    Citation

    Jee-Hoe Yoon, Chan-Song Jo, Jae-Sung Hwang. Comprehensive Analysis of Exosomal MicroRNAs Derived from UVB-Irradiated Keratinocytes as Potential Melanogenesis Regulators. International journal of molecular sciences. 2024 Mar 07;25(6)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 38542076

    View Full Text