Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of :RGS regulation in plants has been shaped by Arabidopsis , (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa , which has no RGS, and Selaginella moellendorffi (a lycophyte) that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these are similar to AtGPA1 and metazoan . Molecular dynamic simulation of the -RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound , crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of :RGS proteins in plants. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Maria Daniela Torres-Rodriguez, Soon Goo Lee, Swarup Roy Choudhury, Rabindranath Paul, Balaji Selvam, Diwakar Shukla, Joseph M Jez, Sona Pandey. Structure-function analysis of plant G-protein regulatory mechanisms identifies key Gα-RGS protein interactions. The Journal of biological chemistry. 2024 May;300(5):107252

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38569936

View Full Text