Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs. Copyright © 2024. Published by Elsevier B.V.

Citation

Kristyna Pavelicova, Tomas Do, Marketa Vejvodova, Tomas Vaculovic, Kinga Nowak, Magdalena Matczuk, Sylwia Wu, Artur Krężel, Vojtech Adam, Marketa Vaculovicova. Joint forces of mass spectrometric techniques (ICP-MS and MALDI-TOF-MS) and fluorescence spectrometry in the study of platinum-based cytostatic drugs interactions with metallothionein MT2 and MT3. Talanta. 2024 Jul 01;274:125920

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38574532

View Full Text