Amy Conaway, Igor Todorovic, Dallas L Mould, Deborah A Hogan
bioRxiv : the preprint server for biology 2024 May 01While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Amy Conaway, Igor Todorovic, Dallas L Mould, Deborah A Hogan. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. bioRxiv : the preprint server for biology. 2024 May 01
PMID: 38585852
View Full Text