Clear Search sequence regions


  • bacteria (2)
  • biosynthesis (1)
  • crystal (1)
  • erythromycin (1)
  • escherichia coli (2)
  • GmhA (4)
  • gram (3)
  • Hep (1)
  • heptoses (1)
  • humans (1)
  • ion (2)
  • models molecular (1)
  • phosphoryl (1)
  • rifampicin (1)
  • therapies (1)
  • zinc (2)
  • Sizes of these terms reflect their relevance to your search.

    Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.

    Citation

    François Moreau, Dmytro Atamanyuk, Markus Blaukopf, Marek Barath, Mihály Herczeg, Nuno M Xavier, Jérôme Monbrun, Etienne Airiau, Vivien Henryon, Frédéric Leroy, Stéphanie Floquet, Damien Bonnard, Robert Szabla, Chris Brown, Murray S Junop, Paul Kosma, Vincent Gerusz. Potentiating Activity of GmhA Inhibitors on Gram-Negative Bacteria. Journal of medicinal chemistry. 2024 Apr 25;67(8):6610-6623

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 38598312

    View Full Text