Lixin Gong, Hao Sun, Lanting Liu, Xiyue Sun, Teng Fang, Zhen Yu, Weiwei Sui, Jingyu Xu, Tingyu Wang, Fangshuo Feng, Lei Lei, Wei Rui, Yuxuan Liu, Xueqiang Zhao, Gang An, Xin Lin, Lugui Qiu, Mu Hao
Haematologica 2024 Nov 01Multiple myeloma (MM) remains an incurable hematologic malignancy. Despite tremendous advances in the treatment of this disease, about 10% of patients still have very poor outcomes with a median overall survival of less than 24 months. Our study aimed to underscore the critical mechanisms pertaining to rapid disease progression and provide novel therapeutic choices for these ultrahigh-risk patients. We utilized single-cell transcriptomic sequencing to dissect the characteristic bone marrow niche of patients who survived less than 2 years (EM24). Notably, enrichment of a LILRB4high pre-mature plasma-cell cluster was observed in EM24 patients compared to patients with durable remission. This cluster exhibited aggressive proliferation and a drug-resistance phenotype. High levels of LILRB4 promoted MM clonogenicity and progression. Clinically, high expression of LILRB4 was correlated with poor prognosis in both newly diagnosed MM patients and relapsed/ refractory MM patients. ATAC-sequencing analysis identified that pronounced chromosomal accessibility caused the elevation of LILRB4 on MM cells. CRISPR-Cas9 deletion of LILRB4 alleviated the growth of MM cells, inhibited the immunosuppressive function of myeloid-derived suppressive cells (MDSC), and further rescued T-cell dysfunction in the MM microenvironment. Greater infiltration of MDSC was observed in EM24 patients. We therefore generated an innovative T-cell receptor-based chimeric antigen receptor T cell, LILRB4-STAR-T. Cytotoxicity experiments demonstrated that LILRB4-STAR-T cells efficaciously eliminated tumor cells and impeded MDSC function. In conclusion, our study elucidates that LILRB4 is an ideal biomarker and promising immunotherapy target for high-risk MM. LILRB4-STAR-T-cell immunotherapy is promising against both tumor cells and the immunosuppressive tumor microenvironment in MM.
Lixin Gong, Hao Sun, Lanting Liu, Xiyue Sun, Teng Fang, Zhen Yu, Weiwei Sui, Jingyu Xu, Tingyu Wang, Fangshuo Feng, Lei Lei, Wei Rui, Yuxuan Liu, Xueqiang Zhao, Gang An, Xin Lin, Lugui Qiu, Mu Hao. LILRB4 represents a promising target for immunotherapy by dual targeting tumor cells and myeloid-derived suppressive cells in multiple myeloma. Haematologica. 2024 Nov 01;109(11):3650-3669
PMID: 38813706
View Full Text