Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Phospholipase A2's (PLA2's) constitute a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain on glycerophospholipids. We have previously reported that each PLA2 Type shows a unique substrate specificity for the molecular species it hydrolyzes, especially the acyl chain that is cleaved from the sn-2 position and to some extent the polar group. However, phosphatidylinositol (PI) and PI phosphates (PIPs) have not been as well studied as substrates as other phospholipids because the PIPs require adaptation of the standard analysis methods, but they are important in vivo. We determined the in vitro activity of the three major types of human PLA2's, namely the cytosolic (c), calcium-independent (i), and secreted (s) PLA2's toward PI, PI-4-phosphate (PI(4)P), and PI-4,5-bisphosphate (PI(4,5)P2). The in vitro assay revealed that Group IVA cPLA2 (GIVA cPLA2) showed relatively high activity toward PI and PI(4)P among the tested PLA2's; nevertheless, the highly hydrophilic headgroup disrupted the interaction between the lipid surface and the enzyme. GIVA cPLA2 and GVIA iPLA2 showed detectable activity toward PI(4,5)P2, but it appeared to be a poorer substrate for all of the PLA2's tested. Furthermore, molecular dynamics (MD) simulations demonstrated that Thr416 and Glu418 of GIVA cPLA2 contribute significantly to accommodating the hydrophilic head groups of PI and PI(4)P, which could explain some selectivity for PI and PI(4)P. These results indicated that GIVA cPLA2 can accommodate PI and PI(4)P in its active site and hydrolyze them, suggesting that the GIVA cPLA2 may best account for the PI and PIP hydrolysis in living cells. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

Citation

Daiki Hayashi, Edward A Dennis. Differentiating human phospholipase A2's activity toward phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2024 Oct;1869(7):159527

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 38917952

View Full Text