Mohammad Sabbaghian, Hamidreza Gheitasi, Manouchehr Fadaee, Helia Javadi Henafard, Ahmad Tavakoli, Ali Akbar Shekarchi, Vahdat Poortahmasebi
Archives of virology 2024 Jul 06Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection. © 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Mohammad Sabbaghian, Hamidreza Gheitasi, Manouchehr Fadaee, Helia Javadi Henafard, Ahmad Tavakoli, Ali Akbar Shekarchi, Vahdat Poortahmasebi. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Archives of virology. 2024 Jul 06;169(8):157
PMID: 38969819
View Full Text