Correlation Engine 2.0
Clear Search sequence regions


  • c57bl mice (1)
  • cerulein (2)
  • chymotrypsin (12)
  • chymotrypsin b (1)
  • chymotrypsin c (2)
  • CTRB1 (8)
  • Ctrc (1)
  • CTRL (6)
  • isoform (2)
  • mice (11)
  • mice knockout (1)
  • minor (1)
  • Trypsin (8)
  • trypsinogen (2)
  • Sizes of these terms reflect their relevance to your search.

    The serine protease chymotrypsin protects the pancreas against pancreatitis by degrading trypsinogen, the precursor to the digestive protease trypsin. Taking advantage of previously generated mouse models with either the Ctrb1 gene (encoding chymotrypsin B1) or the Ctrl gene (encoding chymotrypsin-like protease) disrupted, here we generated the novel Ctrb1-del × Ctrl-KO strain in the C57BL/6N genetic background, which harbors a naturally inactivated Ctrc gene (encoding chymotrypsin C). The newly created mice are devoid of chymotrypsin, yet the animals develop normally, breed well, and show no spontaneous phenotype, indicating that chymotrypsin is dispensable under laboratory conditions. When given cerulein, the Ctrb1-del × Ctrl-KO strain exhibited markedly increased intrapancreatic trypsin activation and more severe acute pancreatitis, relative to wild-type C57BL/6N mice. After the acute episode, Ctrb1-del × Ctrl-KO mice spontaneously progressed to chronic pancreatitis, whereas C57BL/6N mice recovered rapidly. The cerulein-induced pancreas pathology in Ctrb1-del × Ctrl-KO mice was highly similar to that previously observed in Ctrb1-del mice; however, trypsin activation was more robust and pancreatitis severity was increased. Taken together, the results confirm and extend prior observations demonstrating that chymotrypsin safeguards the pancreas against pancreatitis by limiting pathologic trypsin activity. In mice, the CTRB1 isoform, which constitutes about 90% of the total chymotrypsin content, is responsible primarily for the anti-trypsin defenses and protection against pancreatitis; however, the minor isoform CTRL also contributes to an appreciable extent.NEW & NOTEWORTHY Chymotrypsins defend the pancreas against the inflammatory disorder pancreatitis by degrading harmful trypsinogen. This study demonstrates that mice devoid of pancreatic chymotrypsins are phenotypically normal but become sensitized to secretagogue hyperstimulation and exhibit increased intrapancreatic trypsin activation, more severe acute pancreatitis, and rapid progression to chronic pancreatitis. The observations confirm and extend the essential role of chymotrypsins in pancreas health.

    Citation

    Alexandra Demcsák, Siavash Shariatzadeh, Miklós Sahin-Tóth. Secretagogue-induced pancreatitis in mice devoid of chymotrypsin. American journal of physiology. Gastrointestinal and liver physiology. 2024 Sep 01;327(3):G333-G344

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 38981616

    View Full Text