Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Flaviviruses cause severe encephalitic or hemorrhagic diseases in humans. Its members, Kyasanur forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (ALKV), cause hemorrhagic fever and are prevalent in India and Saudi Arabia, respectively, while the tick-borne encephalitis virus (TBEV) causes a dangerous encephalitic infection in Europe and Asia. However, little information is available about the targets of immune responses for these deadly viruses. Here, we predict potential antigenic peptide epitopes of viral envelope protein for inducing a cell-mediated and humoral immune response. Using the Immune Epitope Database and Analysis Resource (IEDB-AR), we identified 13 MHC-I and two MHC-II dominant conserved epitopes in KFDV and ALKV and six MHC-I and three MHC-II epitopes in TBEV envelope proteins. Parallelly, we also predicted B-cell linear and discontinuous envelope protein epitopes for these viruses. Interestingly, the epitopes are conserved in all three viral envelope proteins. Further, the discontinuous epitopes are structurally compared with the available DENV, ZIKV, WNV, TBEV, and LIV envelope protein antibody structures. Overall structural comparison analyses highlight (i) lateral ridge epitope in the ED-III domain of E protein, and (ii) envelope dimer epitope (EDE) could be targeted for developing potent vaccine candidates as well as therapeutic antibody production. Moreover, existing structural and biochemical functions of the same epitopes in homologous viruses are predicted to have a reduced antibody-dependent enhancement (ADE) effect on flaviviral infection. © 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Citation

Venkata N Are, Rajarshi Roy, Sandeep Kumar Dhanda, Sanchit Neema, Neha Rani Sahu, Nitin Adithya, Ritudhwaj Tiwari, Parimal Kar, Debasis Nayak. Predicting immune response targets in orthoflaviviruses through sequence homology and computational analysis. Journal of molecular modeling. 2024 Jul 31;30(8):295

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 39083139

View Full Text