Scheuchzeria palustris, the only species in the Scheuchzeriaceae family, plays a crucial role in methane production and transportation, influencing the global carbon cycle and maintaining ecosystem stability. However, it is now threatened by human activities and global warming. In this study, we generated new organelle genomes for S. palustris, with the plastome (pt) measuring 158,573 bp and the mitogenome (mt) measuring 420,724 bp. We predicted 296 RNA editing sites in mt protein-coding genes (PCGs) and 142 in pt-PCGs. Notably, abundant RNA editing sites in pt-PCGs likely originated from horizontal gene transfer between the plastome and mitogenome. Additionally, we identified positive selection signals in four mt-PCGs (atp4, ccmB, nad3, and sdh4) and one pt-PCG (rps7), which may contribute to the adaptation of S. palustris to low-temperature and high-altitude environments. Furthermore, we identified 35 mitochondrial plastid DNA (MTPT) segments totaling 58,479 bp, attributed to dispersed repeats near most MTPT. Phylogenetic trees reconstructed from mt- and pt-PCGs showed topologies consistent with the APG IV system. However, the conflicting position of S. palustris can be explained by significant differences in the substitution rates of its mt- and pt-PCGs (p < .001). In conclusion, our study provides vital genomic resources to support future conservation efforts and explores the adaptation mechanisms of S. palustris. © 2024 The Author(s). Ecology and Evolution published by John Wiley & Sons Ltd.
Xiang-Yan He, Jin-Ming Chen, Zhi-Zhong Li. Complete organelle genomes of the threatened aquatic species Scheuchzeria palustris (Scheuchzeriaceae): Insights into adaptation and phylogenomic placement. Ecology and evolution. 2024 Sep;14(9):e70248
PMID: 39219575
View Full Text