Yuta Mitobe, Shuhei Suzuki, Kazuki Nakamura, Yurika Nakagawa-Saito, Senri Takenouchi, Keita Togashi, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka, Masashi Okada
International journal of molecular sciences 2024 Aug 30Radiation therapy continues to be the cornerstone treatment for malignant brain tumors, the majority of which express wild-type p53. Therefore, the identification of drugs that promote the ionizing radiation (IR)-induced activation of p53 is expected to increase the efficacy of radiation therapy for these tumors. The growth inhibitory effects of CEP-1347, a known inhibitor of MDM4 expression, on malignant brain tumor cell lines expressing wild-type p53 were examined, alone or in combination with IR, by dye exclusion and/or colony formation assays. The effects of CEP-1347 on the p53 pathway, alone or in combination with IR, were examined by RT-PCR and Western blot analyses. The combination of CEP-1347 and IR activated p53 in malignant brain tumor cells and inhibited their growth more effectively than either alone. Mechanistically, CEP-1347 and IR each reduced MDM4 expression, while their combination did not result in further decreases. CEP-1347 promoted IR-induced Chk2 phosphorylation and increased p53 expression in concert with IR in a Chk2-dependent manner. The present results show, for the first time, that CEP-1347 is capable of promoting Chk2-mediated p53 activation by IR in addition to inhibiting the expression of MDM4 and, thus, CEP-1347 has potential as a radiosensitizer for malignant brain tumors expressing wild-type p53.
Yuta Mitobe, Shuhei Suzuki, Kazuki Nakamura, Yurika Nakagawa-Saito, Senri Takenouchi, Keita Togashi, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka, Masashi Okada. CEP-1347 Boosts Chk2-Mediated p53 Activation by Ionizing Radiation to Inhibit the Growth of Malignant Brain Tumor Cells. International journal of molecular sciences. 2024 Aug 30;25(17)
PMID: 39273420
View Full Text