Correlation Engine 2.0
Clear Search sequence regions


  • 4 and (2)
  • 6 compound (1)
  • biotransform (1)
  • catechols (2)
  • gingerol (3)
  • gingerol (11)
  • glucosides (8)
  • glycosides (1)
  • ic50 (1)
  • prodrug (2)
  • shogaol (1)
  • shogaol (10)
  • Sizes of these terms reflect their relevance to your search.

    6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-β-diglucoside (1), 6-gingerol-4'-O-β-glucoside (2), 6-gingerol-5-O-β-glucoside (3), 6-shogaol-4'-O-β-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-β-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-β-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-β-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-β-diglucoside (1) and 6-gingerol-5-O-β-glucoside (3) caused spontaneous deglucosylation through β-elimination to form 6-shogaol-4'-O-β-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-β-glucoside (4). The assays showed 6-shogaol-4'-O-β-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-β-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.

    Citation

    Te-Sheng Chang, Hsiou-Yu Ding, Jiumn-Yih Wu, Han-Ying Lin, Tzi-Yuan Wang. Glycosylation of 6-gingerol and unusual spontaneous deglucosylation of two novel intermediates to form 6-shogaol-4'-O-β-glucoside by bacterial glycosyltransferase. Applied and environmental microbiology. 2024 Oct 23;90(10):e0077924

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 39315794

    View Full Text