Suzanne Edmands, Jacob R Denova, Ben A Flanagan, Murad Jah, Scott L Applebaum
Journal of evolutionary biology 2024 Nov 02Eukaryotic energy production requires tight coordination between nuclear and mitochondrial gene products. Because males and females often have different energetic strategies, optimal mitonuclear coordination may be sex-specific. Previous work found evidence for sex-specific mitonuclear effects in the copepod Tigriopus californicus by comparing two parental lines and their reciprocal F1 crosses. However, an alternative hypothesis is that the patterns were driven by the parental source of nuclear alleles. Here, we test this alternative hypothesis by extending the same cross to F2 hybrids, which receive both maternal and paternal nuclear alleles from F1 hybrids. Results confirm mitonuclear effects on sex ratio, with distorted ratios persisting from the F1 to F2 generations, despite reduced fitness in F2 hybrids. No sex-by-cross interactions were found for other phenotypic traits measured. Mitochondrial DNA content was higher in females. Both routine metabolic rate and oxidative DNA damage were lower in F2 hybrids than in parentals. The persistence of sex-specific mitonuclear effects, even in the face of F2 hybrid breakdown, attests to the magnitude of these effects, which contribute to the maintenance of within-population mitochondrial DNA polymorphisms. © The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Suzanne Edmands, Jacob R Denova, Ben A Flanagan, Murad Jah, Scott L Applebaum. Mitonuclear effects on sex ratio persist across generations in interpopulation hybrids. Journal of evolutionary biology. 2024 Nov 02;37(11):1386-1393
PMID: 39324636
View Full Text