Clear Search sequence regions


filter terms:
  • filament (1)
  • heart (4)
  • Sizes of these terms reflect their relevance to your search.

    Soft peristaltic pumps, which use soft ring actuators instead of mechanical pistons or rollers, offer advantages in transporting liquids with non-uniform solids, such as slurry, food, and sewage. Recent advances in 3D printing with flexible thermoplastic polyurethane (TPU) present the potential for single-step fabrication of these pumps, distinguished from handcrafted, multistep traditional silicone casting methods. However, because of the relatively high hardness of TPU, TPU-based soft peristaltic pumps contract insufficiently and thus cannot perform as well as silicone-based ones. Improving the performance is crucial for fully automated, one-step manufactured soft pumps to lead to industrial use. This study aims to enhance TPU-based soft pumps through bioinspired design. Specifically, it proposed a design inspired by embryonic tubular hearts, in contrast to previous studies that mimicked digestive tracts. The new design facilitated long-axis stretching of an elliptical lumen during non-concentric contractile motion, akin to embryonic tubular hearts. The design was optimized for ring actuators and pumps 3D-printed with shore hardness 85 A TPU filament. The ring actuator achieved over 99% lumen closure with the best designs. The soft pumps transported water at flow rates of up to 218 ml min-1and generated a maximum discharge pressure of 355 mm Hg, comparable to the performance of blood pumps used in continuous renal replacement therapy. Creative Commons Attribution license.

    Citation

    Kyoung Jin Lee, Jung Chan Lee. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Bioinspiration & biomimetics. 2024 Oct 22;19(6)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 39366423

    View Full Text