Clear Search sequence regions


  • behavior (1)
  • coil springs (8)
  • flowers (1)
  • passiflora (4)
  • passion flower (2)
  • plants (7)
  • thin (1)
  • Sizes of these terms reflect their relevance to your search.

    Tendrils of climbing plants possess a striking spring-like structure characterized by a minimum of two helices of opposite handedness connected by a perversion. By performing tensile experiments and morphological measurements on tendrils of the climbing passion flower Passiflora discophora, we show that these tendril springs act as coil springs within the plant's attachment system and resemble technical coil springs. However, tendril springs have a low spring index and a high pitch angle compared with typical metal coil springs resulting in a more complex loading situation in the plant tendrils. Moreover, the tendrils undergo a drastic shift from the fresh turgescent stage to a dried-off and dead senescent stage. This entails changes in material properties (elastic modulus in tension), morphology (tendril and helix diameter, number of windings), anatomy (tissue composition), and failure behavior (susceptibility to delamination) and reduces the degree of elasticity and strain at failure of the tendrils. Nevertheless, senescent tendrils remain functional as springs and maintain high energy dissipation capacity and high break force. This renders the system highly energy efficient, as the plant no longer needs to metabolically sustain the died-back tendrils. Because of its energy-storing spring system, its high energy dissipation and high safety factor, the attachment system can be considered a 'fail-safe' system. STATEMENT OF SIGNIFICANCE: The use of coil springs as mechanical devices is not restricted to man-made machinery; striking spring structures can also be found within the attachment systems of climbing plants. Passiflora discophora climbs by using long thin tendrils with adhesive pads at their tips. Once the pads have attached to a support, the tendrils coil and form a spring-like structure. Here, we analyze the form and mechanics of these 'tendril springs', compare them with conventional technical coil springs, and discuss changes in the tendril springs during plant development. We reveal the main features of the attachment system, which might inspire new artificial attachment devices within the emerging field of plant-inspired soft-robotics. Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.

    Citation

    Frederike Klimm, Marc Thielen, Jaro Homburger, Michelle Modert, Thomas Speck. Natural coil springs: Biomechanics and morphology of the coiled tendrils of the climbing passion flower Passiflora discophora. Acta biomaterialia. 2024 Nov;189:478-490

    Expand section icon Mesh Tags


    PMID: 39393657

    View Full Text