Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In bacteria and eukaryotic organelles of prokaryotic origin, ATP-dependent proteases are crucial for regulating protein quality control through substrate unfolding and degradation. Understanding the mechanism and regulation of this key cellular process could prove instrumental in developing therapeutic strategies. Very recently, cryo-electron microscopy structural studies have shed light on the functioning of AAA+ proteases, including membrane-bound proteolytic complexes. This review summarizes the structure and function relationship of bacterial AAA+ proteases, with a special focus on the sole membrane-bound AAA+ protease in Escherichia coli, FtsH. FtsH substrates include both soluble cytoplasmic and membrane-incorporated proteins, highlighting its intricate substrate recognition and processing mechanisms. Notably, 12 copies of regulatory HflK and HflC proteins, arranged in a cage-like structure embedded in the bacterial inner membrane, can encase up to 4 FtsH hexamers, thereby regulating their role in membrane protein quality control. FtsH represents an intriguing example, highlighting both its similarity to cytosolic AAA+ proteases with respect to overall architecture and oligomerization as well as its unique features, foremost its incorporation into a membrane-bound complex formed by HflK and HflC to mediate its function in protein quality control.© 2024 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

Citation

Rya Ero, Zhu Qiao, Kwan Ann Tan, Yong-Gui Gao. Structural insights into the membrane-bound proteolytic machinery of bacterial protein quality control. Biochemical Society transactions. 2024 Oct 17


PMID: 39417347

View Full Text