Clear Search sequence regions


  • antibodies (1)
  • cellular (1)
  • help (1)
  • humans (1)
  • macrophages (1)
  • myeloid cells (8)
  • neutrophils (1)
  • research (1)
  • t cells (1)
  • Sizes of these terms reflect their relevance to your search.

    Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy. © 2024. The Author(s).

    Citation

    Chuhan Ma, Yang Li, Min Li, Chao Lv, Yu Tian. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer immunology, immunotherapy : CII. 2025 Jan 03;74(2):40

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 39751898

    View Full Text