The nuclear pore complex (NPC) is a vital regulator of molecular transport between the nucleus and cytoplasm in eukaryotic cells. At the heart of the NPC's function are intrinsically disordered phenylalanineglycine-rich nucleoporins (FG-Nups), which form a dynamic permeability barrier within the central channel. This disordered nature facilitates efficient nucleocytoplasmic transport but also poses significant challenges to its characterization, especially within the nano-confined environment of the NPC. Recent advances in experimental techniques, such as cryo-electron microscopy, atomic force microscopy, fluorescence microscopy, and nuclear magnetic resonance, along with computational modeling, have illuminated the conformational flexibility of FG-Nups, which underpins their functional versatility. This review synthesizes these advancements, emphasizing how disruptions in FG-Nup behavior-caused by mutations or pathological interactions-contribute to diseases such as neurodegenerative disorders, aging-related decline, and viral infections. Despite progress, challenges persist in deciphering FG-Nup dynamics within the crowded and complex cellular environment, especially under pathological conditions. Addressing these gaps is critical for advancing therapeutic strategies targeting NPC dysfunction in disease progression. © 2025 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Yu Chen, Guoli Zhou, Miao Yu. Conformational dynamics of the nuclear pore complex central channel. Biochemical Society transactions. 2025 Feb 07;53(1)
PMID: 39927798
View Full Text