Aligning with sustainable green practices, this study examines the partial replacement of chickpea protein isolate with commercially available autotrophic Chlorella vulgaris (Auto-Chlorella) and heterotrophic Parachlorella kessleri (Hetero-Chlorella) to assess impacts on food emulsions' properties and potential functional value. Rheology and texture analysis show that Chlorella biocompounds enhance emulsions by creating a synergistic network with chickpea proteins. The type of Chlorella used significantly influences emulsion characteristics due to differences in culture and processing conditions. Hetero-Chlorella contributed to more structured emulsions, revealed by higher values of the viscoelastic functions (G', G″, and G0N), indicating a complex three-dimensional network (p < 0.05), while Auto-Chlorella excelled in augmenting dietary elements (p < 0.05), leading to emulsions rich in antioxidants and allowing for a 'rich in iron' claim. Both types contribute to smaller oil droplet size, improved firmness, adhesiveness, and appealing coloration (p < 0.05). Preliminary findings on Vitamin B12 content suggest promising bioavailability potential. However, the nutritional density of Chlorella emphasizes the need for careful microbiological stability. Produced on a lab scale without preservatives, these emulsions highlight the need for preservation strategies in large-scale production. This research supports the potential for industrial microalgae-based mayonnaise, addressing consumer demand for innovation while prioritizing safety.
Sheyma Khemiri, Albano Joel Santos, Anabela Raymundo. Impact of Trophic Mode-Driven Chlorella Biomass on Vegan Food Emulsions: Exploring Structure and Functionality. Molecules (Basel, Switzerland). 2025 Feb 07;30(4)
PMID: 40005078
View Full Text