Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In anesthetized sheep, we measured bronchial blood flow (Qbr) by an ultrasonic flow probe to investigate the interaction between inhaled nitric oxide (NO; 100 parts/million) given for 5 min and 5 ml of aerosolized isoetharine (1.49 x 10(-2) M concentration). NO and isoetharine increased Qbr from 26.5 +/- 6.5 to 39.1 (SE) +/- 10.6 and 39.7 +/- 10.7 ml/min, respectively (n = 5). Administration of NO immediately after isoetharine further increased Qbr to 57.3 +/- 15.1 ml/min. NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME; 30 mg/kg, in 20 ml saline given i.v.) decreased Qbr to 14.6 +/- 2.6 ml/min. NO given three times alternately with isoetharine progressively increased Qbr from 14.6 +/- 2.6 to 74.3 +/- 17.0 ml/min, suggesting that NO and isoetharine potentiate vasodilator effects of each other. In three other sheep, after L-NAME three sequential doses of isoetharine increased Qbr from 10.2 +/- 3.4 to 11.5 +/- 5.7, 11.7 +/- 4.7, and 13.3 +/- 5.7 ml/min, respectively, indicating that effects of isoetharine are predominantly mediated through synthesis of NO. When this was followed by three sequential administrations of NO, Qbr increased by 146, 172, and 185%, respectively. Thus in the bronchial circulation, there seems to be a close interaction between adenosine 3',5'-cyclic monophosphate- and guanosine 3',5'-cyclic monophosphate-mediated vasodilation.

Citation

N B Charan, S R Johnson, S Lakshminarayan, W H Thompson, P Carvalho. Nitric oxide and beta-adrenergic agonist-induced bronchial arterial vasodilation. Journal of applied physiology (Bethesda, Md. : 1985). 1997 Feb;82(2):686-92

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9049753

View Full Text