Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The current members of the genus parapoxvirus are orf virus (ORFV), bovine papular stomatitis virus (BPSV), pseudocowpoxvirus (PCPV) and parapoxvirus of red deer in New Zealand (PVNZ). BPSV and PCPV are maintained in cattle while ORFV is maintained in sheep and goats, but all three are zoonoses. Only the recently reported PVNZ has yet to be recorded as infecting humans. Tentative members of the genus are camel contagious ecthyma virus, chamois contagious ecthyma virus and sealpoxvirus. The separation of the parapoxviruses into 4 distinct groups has been based on natural host range, pathology and, more recently, on restriction endonuclease and DNA/DNA hybridisation analyses. The latter studies have shown that the parapoxviruses share extensive homology between central regions of their genomes, but much lower levels of relatedness within the genome termini. The high G + C content of parapoxvirus DNA is in contrast to most other poxviruses and suggests that a significant genetic divergence from other genera of this family has occurred. DNA sequencing of portions of the genome of ORFV, the type species of the genus, has allowed a detailed comparison with the fully sequenced genome of the orthopoxvirus, vaccinia virus (VACV). These studies have provided a genetic map of ORFV and revealed a central core of 88 kbp within which the genomic content was strikingly similar to that of VACV. This conservation is not maintained in the genome termini where insertions, deletions and translocations have occurred. The characterisation of specific ORFV genes may lead to the construction of attenuated vaccine strains in which genes such as those with the potential to interfere with the immune response of the host have been deleted. The current ORFV vaccines are living unattenuated virus and vaccination lesions produce virus which contaminates the environment in a manner similar to natural infection. The virus in scab material is relatively resistant to inactivation and this virus both perpetuates the disease in sheep and provides the most likely source of human infections. A vaccine which immunises animals without perpetuating the disease could be the best way of reducing the incidence of ORFV infection of humans. It is likely that protection against infection by ORFV is cell mediated and will require the endogenous production of relevant antigens. We have recently constructed a series of VACV recombinants each of which contains a large multigene fragment of ORFV DNA. Together the recombinants represent essentially all of the ORFV genome in an overlapping manner. Vaccination of sheep with the recombinant library provided protection against challenge with virulent ORFV. Further studies with this library may enable dominant protective antigens of ORFV to be identified and lead to their incorporation into a subunit vaccine.

Citation

A Mercer, S Fleming, A Robinson, P Nettleton, H Reid. Molecular genetic analyses of parapoxviruses pathogenic for humans. Archives of virology. Supplementum. 1997;13:25-34

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9413523

View Full Text