Correlation Engine 2.0
Clear Search sequence regions


A recessive mutation, aarG1, has been identified that resulted in an 18-fold increase in the expression of beta-galactosidase from an aac(2')-lacZ fusion. Transcriptional fusions and Northern blot analysis demonstrated that the aarG1 allele also resulted in a large increase in the expression of aarP, a gene encoding a transcriptional activator of aac(2')-Ia. The effects of aarG1 on aac(2')-Ia expression were mediated by aarP-dependent and -independent mechanisms. The aarG1 allele also resulted in a multiple antibiotic resistance (Mar) phenotype, which included increased chloramphenicol, tetracycline and fluoroquinolone resistance. This Mar phenotype also resulted from aarP-dependent and -independent mechanisms. Sequence analysis of the aarG locus revealed the presence of two open reading frames, designated aarR and aarG, organized in tandem. The putative AarR protein displayed 75% amino acid identity to the response regulator PhoP, and the AarG protein displayed 57% amino acid identity to the sensor kinase PhoQ. The aarG1 mutation, a C to T substitution, resulted in a threonine to isoleucine substitution at position 279 (T279I) in the putative sensor kinase. The AarG product was functionally similar to PhoQ, as it was able to restore wild-type levels of maganin resistance to a Salmonella typhimurium phoQ mutant. However, expression of the aarP and aac(2')-Ia genes was not significantly affected by the levels of Mg2+ or Ca2+, suggesting that aarG senses a signal other than divalent cations.

Citation

P N Rather, M R Paradise, M M Parojcic, S Patel. A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. Molecular microbiology. 1998 Jun;28(6):1345-53

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 9680222

View Full Text