Correlation Engine 2.0
Clear Search sequence regions


We studied the pharmacological characterization of the 5-hydroxytryptamine(2) (5-HT(2)) heteroreceptor located on glutamatergic cerebellar mossy fiber nerve terminals. Depolarization-evoked overflow of endogenous glutamate from rat cerebellar "giant" mossy fiber synaptosomes was inhibited by 5-HT or (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(+/-)-DOI], exhibiting pD(2) (= -log EC(50)) values of 7.37 and 7.29, respectively. Trazodone inhibited the depolarization-evoked glutamate overflow, exhibiting lower potency (pD(2) = 6.42) and lower efficacy with respect to 5-HT or (+/-)-DOI (maximal inhibition, 54%, compared with 70% for either 5-HT or (+/-)-DOI). Ketanserin, a 5-HT(2A)/5-HT(2C) receptor antagonist, counteracted the inhibitory effect of (+/-)-DOI or trazodone. Inhibition of glutamate overflow by 5-HT, (+/-)-DOI, or trazodone was prevented by the selective 5-HT(2A) receptor antagonist R-(+)-alpha-(2,3-dimethyoxyphenyl)-1-(2-(4-fluorophenyl)ethyl)-4-piperidine-methanol (MDL 100907), while the potent and selective 5-HT(2C) receptor antagonist 6-chloro-5-methyl-1-[6-(methylpyridin-3-yloxy)pyridin-3yl-carbamoyl] indoline (SB 242084) was ineffective. In cerebellar slices, MDL 100907 increased on its own the K(+)-evoked release of glutamate. It is concluded that the evoked release of glutamate from cerebellar mossy fibers can be controlled by inhibitory presynaptic 5-HT(2A) heteroreceptors, the receptors can be activated by endogenously released 5-HT, and trazodone behaves as a partial agonist at these receptors.

Citation

M Marcoli, C Rosu, A Bonfanti, M Raiteri, G Maura. Inhibitory presynaptic 5-hydroxytryptamine(2A) receptors regulate evoked glutamate release from rat cerebellar mossy fibers. The Journal of pharmacology and experimental therapeutics. 2001 Dec;299(3):1106-11

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11714900

View Full Text