Correlation Engine 2.0
Clear Search sequence regions


Acid sphingomyelinase (ASM) is an important lipid-metabolizing enzyme cleaving sphingomyelin to ceramide, mainly within lysosomes. Acid ceramidase (AC) further degrades ceramide to sphingosine which can then be phosphorylated to sphingosine-1-phosphate. Ceramide and its metabolite sphingosine-1-phosphate have been shown to antagonistically regulate apoptosis, cellular differentiation, proliferation and cell migration. Inhibitors of ASM or AC therefore hold promise for a number of new clinical therapies, e.g. for Alzheimer's disease and major depression on the one hand and cancer on the other. Inhibitors of ASM have been known for a long time. Cationic amphiphilic substances induce the detachment of ASM protein from inner lysosomal membranes with its consecutive inactivation, thereby working as functional inhibitors of ASM. We recently experimentally identified a large number of hitherto unknown functional inhibitors of ASM and determined specific physicochemical properties of such cationic amphiphilic substances that functionally inhibit ASM. We propose the acronym "FIASMA" (Functional Inhibitor of Acid SphingoMyelinAse) for members of this large group of compounds with a broad range of new clinical indications. FIASMAs differ markedly with respect to molecular structure and current clinical indication. Most of the available FIASMAs are licensed for medical use in humans, are minimally toxic and may therefore be applied for disease states associated with increased activity of ASM. Copyright 2010 S. Karger AG, Basel.

Citation

Johannes Kornhuber, Philipp Tripal, Martin Reichel, Christiane Mühle, Cosima Rhein, Markus Muehlbacher, Teja W Groemer, Erich Gulbins. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2010;26(1):9-20

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20502000

View Full Text