Correlation Engine 2.0
Clear Search sequence regions

Nitric oxide (NO) donors increase heart rate (HR) through a guanylyl cyclase-dependent stimulation of the pacemaker current I(f), without affecting basal I(Ca-L). The activity of I(f)is known to be enhanced by cyclic nucleotides and by an increase in cytosolic Ca(2+). We examined the role of cGMP-dependent signaling pathways and intracellular Ca(2+)stores in mediating the positive chronotropic effect of NO donors. In isolated guinea pig atria, the increase in HR in response to 1-100 micromol/l 3-morpholino-sydnonimine (SIN-1; with superoxide dismutase, n=6) or diethylamine-NO (DEA-NO, n=8) was significantly attenuated by blockers of the cGMP-inhibited phosphodiesterase (PDE3; trequinsin, milrinone or Ro-13-6438, n=22). In addition, the rate response to DEA-NO or sodium nitroprusside (SNP) was significantly reduced following inhibition of PKA (KT5720 or H-89, n=15) but not PKG (KT5728 or Rp-8-pCPT-cGMPs, n=16). Suppression of sarcoplasmic (SR) Ca(2+)release by pretreatment of isolated atria with ryanodine or cyclopiazonic acid (2 micromol/l and 60 micromol/l, n=16) significantly reduced the chronotropic response to 1-100 micromol/l SIN-1 or DEA-NO. Moreover, in isolated guinea pig sinoatrial node cells 5 micromol/l SNP significantly increased diastolic and peak Ca(2+)fluorescence (+13+/-1% and +28+/-1%, n=6, P<0.05). Our findings are consistent with a functionally significant role of cAMP/PKA signaling (via cGMP inhibition of PDE3) and SR Ca(2+)in mediating the positive chronotropic effect of NO donors. Copyright 2000 Academic Press.


P Musialek, L Rigg, D A Terrar, D J Paterson, B Casadei. Role of cGMP-inhibited phosphodiesterase and sarcoplasmic calcium in mediating the increase in basal heart rate with nitric oxide donors. Journal of molecular and cellular cardiology. 2000 Oct;32(10):1831-40

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 11013127

View Full Text