Correlation Engine 2.0
Clear Search sequence regions


Long-term exposure to nerve growth factor (NGF) is well established to have neurotrophic effects on basal forebrain cholinergic neurons, but its potential actions as a fast-acting neuromodulator are not as well understood. We report that NGF (0.1-100 ng/ml) rapidly (<60 min) and robustly enhanced constitutive acetylcholine (ACh) release (148-384% of control) from basal forebrain cultures without immediate persistent increases in choline acetyltransferase activity. More ACh was released in response to NGF when exposure was coupled with a higher depolarization level, suggesting activity dependence. In a long-term potentiation-like manner, brief NGF exposure (10 ng/ml; 60 min) induced robust and prolonged increases in ACh release, a capacity that was shared with the other neurotrophins. K252a (10-100 nm), BAPTA-AM (25 microm), and Cd(2+) (200 microm) prevented NGF enhancement of ACh release, suggesting the involvement of TrkA receptors, Ca(2+), and voltage-gated Ca(2+) channels, respectively. Forskolin (10 microm), a cAMP generator, enhanced constitutive ACh release but did not interact synergistically with NGF. Tetrodotoxin (1 microm) and cycloheximide (2 microm) did not prevent NGF-induced ACh release, indicative of action at the level of the cholinergic nerve terminal and that new protein synthesis is not required for this neurotransmitter-like effect, respectively. In contrast, after a 24 hr NGF treatment, distinct protein synthesis-dependent and independent effects on choline acetyltransferase activity and ACh release were observed. These results indicate that neuromodulator/neurotransmitter-like (protein synthesis-independent) and neurotrophic (translation-dependent) actions likely make distinct contributions to the enhancement of cholinergic activity by NGF.

Citation

D S Auld, F Mennicken, R Quirion. Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: differentiation between neuromodulatory and neurotrophic influences. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2001 May 15;21(10):3375-82

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11331367

View Full Text