Correlation Engine 2.0
Clear Search sequence regions


Although the area of research on the role of MCs in innate immunity is relatively new, a number of studies that are reviewed here provide substantial evidence that MCs play a critical role in host immune defense against gram-negative bacteria. The studies show that mast cells have the ability to recognize and engulf bacteria and they release a number of inflammatory mediators including interleukin (IL)-4, IL-6, IL-10, TNF alpha, and leukotrienes in response to bacterial challenge. MC-derived TNF alpha and leukotrienes are shown to be important for bacterial clearance and early recruitment of phagocytic help at the site of infection. Studies directed at elucidating the molecular mechanisms associated with mast cell recognition of bacteria and subsequent events leading to mast cell mediator release revealed that GPI anchored CD48 molecule present on the cell surface of mast cells serves as a receptor for the bacterial adhesion molecule, FimH. The ligation of CD48 receptor by FimH-expressing bacteria results in bacterial uptake into caveolar chambers. This distinct mechanism of bacterial uptake promotes bacterial survival inside the cytosol of the mast cells. Although the exact mechanism(s) of how MC-dependent inflammatory responses are regulated is currently not known, recent studies have shown that complement, CD11 beta/CD18 (Mac-1) and protein tyrosine kinase JAK3, and TLR4 are important for the full expression of MC-dependent innate immunity in mice.

Citation

Ravi Malaviya, Amara Georges. Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clinical reviews in allergy & immunology. 2002 Apr;22(2):189-204

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 11975423

View Full Text