Correlation Engine 2.0
Clear Search sequence regions


Antidiabetic sulphonylureas can bind to various intracellular organelles including mitochondria. The aim of this study was to monitor the influence of antidiabetic sulphonylureas on membrane permeability in mitochondria isolated from rat skeletal muscle. The effects of glibenclamide (and other sulphonylurea derivatives) on mitochondrial function were studied by measuring mitochondrial swelling, mitochondrial membrane potential, respiration rate and Ca2+ transport into mitochondria. We observed that glibenclamide induced mitochondrial swelling (EC50 = 8.2 +/- 2.5 microM), decreased the mitochondrial membrane potential and evoked Ca2+ efflux from the mitochondrial matrix. These effects were blocked by 2 microM cyclosporin A, an inhibitor of the mitochondrial permeability transition. Moreover, 30 microM glibenclamide accelerated the respiratory rate in the presence of glutamate/malate, substrates of complex I of the mitochondrial respiratory chain. In conclusion, we postulate that the antidiabetic sulphonylureas activate the mitochondrial permeability transition in skeletal muscle by increasing its sensitivity to Ca2+.

Citation

Jolanta Skalska, Grazyna Debska, Wolfram S Kunz, Adam Szewczyk. Antidiabetic sulphonylureas activate mitochondrial permeability transition in rat skeletal muscle. British journal of pharmacology. 2005 Jul;145(6):785-91

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 15895111

View Full Text