Correlation Engine 2.0
Clear Search sequence regions

The renal betaine transporter (BGT1) protects cells in the hypertonic medulla by mediating uptake and accumulation of the osmolyte betaine. Transcription plays an essential role in upregulating BGT1 transport in MDCK cells subjected to hypertonic stress. During hypertonic stress, the abundance of the transcription factor TonEBP increases and it shifts from the cytoplasm to the nucleus where it activates transcription of the BGT1 gene. Little is known about post-transcriptional regulation of BGT1 protein. In the presence of the proteasome inhibitor MG-132, which blocked nuclear translocation of TonEBP, the hypertonic upregulation of BGT1 protein and transport was prevented and cell viability in hypertonic medium was impaired over 24 h. Urea also prevented the hypertonic upregulation of BGT1 protein and transport, but did not interfere with TonEBP translocation and cell viability. Shorter treatments of hypertonic cells with MG-132 avoided viability problems and produced dose-dependent inhibition of translocation and transport. When stably transfected MDCK cells that over-expressed BGT1 were treated for 6 h with hypertonic medium containing 3 microM MG-132, there was 43% inhibition of nuclear translocation, 83% inhibition of BGT1 transport, and no change in viability. While other proteasome functions may be involved, these data are consistent with a critical role for nuclear translocation of TonEBP in upregulation and membrane insertion of BGT1 protein.


Philip E Lammers, Jeffrey A Beck, Shaoyou Chu, Stephen A Kempson. Hypertonic upregulation of betaine transport in renal cells is blocked by a proteasome inhibitor. Cell biochemistry and function. 2005 Sep-Oct;23(5):315-24

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 15945068

View Full Text