Correlation Engine 2.0
Clear Search sequence regions


Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. In this study, we examine an innate immune recognition pathway that senses pneumococcal infection, triggers type I IFN production, and regulates RANTES production. We found that human and murine alveolar macrophages as well as murine bone marrow macrophages, but not alveolar epithelial cells, produced type I IFNs upon infection with S. pneumoniae. This response was dependent on the pore-forming toxin pneumolysin and appeared to be mediated by a cytosolic DNA-sensing pathway involving the adapter molecule STING and the transcription factor IFN regulatory factor 3. Indeed, DNA was present in the cytosol during pneumococcal infection as indicated by the activation of the AIM2 inflammasome, which is known to sense microbial DNA. Type I IFNs produced by S. pneumoniae-infected macrophages positively regulated gene expression and RANTES production in macrophages and cocultured alveolar epithelial cells in vitro. Moreover, type I IFNs controlled RANTES production during pneumococcal pneumonia in vivo. In conclusion, we identified an immune sensing pathway detecting S. pneumoniae that triggers a type I IFN response and positively regulates RANTES production.

Citation

Uwe Koppe, Katrin Högner, Jan-Moritz Doehn, Holger C Müller, Martin Witzenrath, Birgitt Gutbier, Stefan Bauer, Thomas Pribyl, Sven Hammerschmidt, Jürgen Lohmeyer, Norbert Suttorp, Susanne Herold, Bastian Opitz. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. Journal of immunology (Baltimore, Md. : 1950). 2012 Jan 15;188(2):811-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22156592

View Full Text