Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The quaternary ammonium salt, sanguinarine (SANG), is of great practical and research interest because of its pronounced, widespread physiological effects, which promote anti-microbial and anti-inflammatory responses in experimental animals. Although SANG is originally shown to possess anti-inflammatory properties and it has been used to treat various inflammatory diseases, its effects on ulcerative colitis have not been previously explored. The aim of the present study is to evaluate the effect of SANG on acetic acid-induced ulcerative colitis in mice. Experimental animals received SANG (1, 5 and 10 mg/kg, p.o.) and sulfasalazine (500 mg/kg, p.o.) for seven consecutive days after induction of colitis by intra-rectal acetic acid (5% v/v) administration. The colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. SANG treatment significantly decreased mortality rate, body weight loss, disease activity index (DAI), wet colon weight, macroscopic and histological score when compared to acetic acid-induced controls. In addition, administration of SANG effectively inhibited p65 NF-κB protein expression and MPO activity accumulation. The levels of TNF-α and IL-6 in the serum and colon tissue of mice with experimental colitis were decreased by SANG in a concentration-dependent manner in response to p65 NF-κB. The possible mechanism of protection on experimental colitis was that SANG could be through attenuating early steps of inflammation as well as decreasing the expression of NF-κB and subsequent pro-inflammatory cytokines production. Copyright © 2013 Elsevier Inc. All rights reserved.

Citation

Xiaofeng Niu, Ting Fan, Weifeng Li, Huimin Huang, Yanmin Zhang, Wei Xing. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicology and applied pharmacology. 2013 Mar 15;267(3):256-65

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23352506

View Full Text